Çankaya University - ECE Department - ECE 376

Student Name :
Student Number :

Duration : 2 hours
Open book exam

Questions

1. (35 Points) A) A message signal of $v(t)=a_{0} g_{T}(t)+a_{1} g_{T}\left(t-T_{b}\right)$, where $a_{0}, a_{1}=\mp 1$, $T_{b}=0.5 \mathrm{msec}$. and $g_{T}(t)=\left\{\begin{array}{ll}1 & \text { for } 0 \leq t \leq T_{b} \\ 0 & \text { otherwise }\end{array}\right.$, gets multiplied by a PN sequence of $c(t)=\sum_{n=0}^{N} c_{n} p\left(t-n T_{c}\right)$, where $c_{n}=\mp 1, T_{c}=0.5 \mu \mathrm{sec}$. and $p(t)= \begin{cases}1 & \text { for } 0 \leq t \leq T_{c} \\ 0 & \text { otherwise }\end{cases}$ Considering one T_{b} duration covers the entire time duration of $c(t)$, what should be N ?. For the given case, plot time waveforms and frequency spectrums, appropriately marking the numeric values on the time and propagation axes.
B) For a DS spread spectrum system employing five users (i.e., five different message signals), draw the transmitter and receiver block diagrams explaining the function of each block.

Solution: A) Since one Tb duration should cover one $c(t)$ then $N=\frac{T_{b}}{T_{C}}=L_{L}=1000$
Typical time waveforms for $V(t)$ and $V(t) \subset(t)$
are shown below. It is assumed that $c(t)$ repeats

$v(t)$

\square
-1

Approximate spectrum (rounded to window functions)

ELF 376 Final Exam dated 28.05:2009 0.L
Addendum pl
B) Below we show the block diagram if

Os spread spectrum system employing five users

Recelver Side

2. (35 Points) An OFDM system with four sub-carriers is to be designed for a 4 QAM signal with a rate of 1 k symbols $/ \mathrm{sec}$. By choosing the appropriate sub-carries and the frequency spacing between them, show that each symbol of 4 QAM, when placed on a subcarrier, is orthogonal to all other three symbols, if integrated over a symbol period, even if the symbols have different phase shifts. Draw and explain the functioning of block diagram of transmitter and receiver for this OFDM system.

Solution: Since symbol ate is $t k$ symbols/sec $T_{s}=10^{-3} \mathrm{sec}=1 \mathrm{msec}$ and a symbol is placed on the same carrier every $4 T_{s}$, then $T=4 T=4 \mathrm{msec}$. So (excluding a shift of fe), if $t_{1}=l k H z \rightarrow l$, t sub carrier $f_{k}-f_{1}=\frac{n}{T_{s}}$ where $k=2,3,4, \quad n=4,2,3$
sub carriers Then we find $t_{2}=2 \mathrm{klz}, t_{3}=3 \mathrm{kHz}, f_{4}=4 \mathrm{kHz}$ Note that the spacing between subcarrier can also be adjusted with T, in this case by keeping $f_{F}=1 \mathrm{kHz}$ $t_{2}=1250 \mathrm{~Hz}, t_{3}=1500 \mathrm{~Hz}, t_{4}=1750 \mathrm{~Hz}$ Now perform the integration below $\int_{0}^{T_{s}} \cos \left(2 \pi f_{k} t+\phi_{k}\right) \cos \left(2 \pi f_{j} t+\phi_{j}\right) d t$

$$
=\left.\frac{1}{4 \pi\left(f_{k}-f_{j}\right)} \sin \left[2 \pi\left(t_{k}-t_{j}\right) t+\phi_{k}-\phi_{j}\right]\right|_{0} ^{T_{s}}+
$$

$$
\begin{aligned}
& \left.\frac{1}{4 \pi\left(t_{k}+t_{j}\right)} \sin \left[2 \pi\left(t_{k}+t_{j}\right) t+\phi_{k}+\phi_{j}\right]\right|_{0} ^{T_{s}} \\
& =\frac{1}{4 \pi\left(t_{k}-t_{j}\right)}\left\{\sin \left[2 \pi\left(t_{k}-t_{j}\right) T_{s}+\phi_{k}-\phi_{j}\right]\right. \\
& \left.-\sin \left(\phi_{k}-\phi_{j}\right)\right\}+\frac{1}{4 \pi\left(t_{k}+t_{j}\right)}\left\{\sin \left[2 \pi\left(t_{k}+t_{j}\right) T_{s}+\phi_{k}+\phi_{j}\right]\right. \\
& \left.-\sin \left(\phi_{k}+\phi_{j}\right)\right\}
\end{aligned}
$$

where the fins difference of sines reduce to zero since $t_{k}-t_{j}=\frac{n}{T_{s}}$, but for second group of sines to evaluate to aero if must be that $t_{j}=\frac{n}{T_{s}}$ or the starting $t_{e}=\frac{n}{T_{s}}$. Block diagram of OFOM system is shown below

3. (30 Points) Answer the following questions as True or False. For the False ones give the correct answer or the reason. For the True ones, justify your answer.
a) Prob. of error in 4 QAM is higher than prob. of error in 8 PSK: If compared on equal power (or equal energy) basis, this cannot be true, since the constellation of 8 PSK is more crowd than 4 GAM.
b) In MF detection, distance metrics, $D\left(\mathbf{r}, \mathbf{s}_{\mathrm{m}}\right)$ calculation gives the correlation of received signal vector \mathbf{r} with the axis of basis functions: False, since $D(r, i m)$ gives the distance between the signal vector r and all. signal vectors of the constellation
c) The number of dimensions in a set of signals can be determined by eye inspection :

Partiall true, but if this is not possible, then
Gram-Schmidt orthogonalization procedure must formally be applied
d) FSK is a combination of QAM and PSK: False, OAM can be considered to be a combination of Ask and PSK.
e) For detection, receiver attempts to determine the constellation diagram sent by transmitter : False, the receiver already knows the constellation diagram, the receiver attemps to detomine which of the signals in this constellation diagram was transmitted
f) After successful MF detection, we can say that we have completely eliminated noise from the received signal :

True, if the defection is successful,
then MF detector. outputs a clean copy (without noise) of transmitted signal.

